Debugging with GNU gdb¶
The GNU Debugger (GDB) is a standard debugger for serial programs, although it can be used for parallel and even distributed programs with few processes too.
It is not recommended to debug MPI-parallel binaries with GDB. Please use parallel debuggers like ARM Forge (formerly Allinea ddt) or Totalview to ease debugging of node-parallel code.
Documentation¶
The official documentation can be found here. For a detailed lists of the different program options you can also consult the man pages installed on HoreKa:
$ man gdb
Basic commands¶
The code you want to debug should be compiled with the -g
option. If the optimization flag is not set, GCC will still do some basic optimization, like dead-code elimination or reorder instruction execution obfuscating the order when debugging. Therefore, it is recommended to turn off optimization explicitly with the -O0 parameter for debugging. To start a debug session for a program execute GDB with the program path as parameter:
$ gdb ./example
Inside GDB is a prompt where you can enter commands. Important commands are listed below.
Command | Description |
---|---|
help cmd |
Show help for command cmd |
break func |
Set a breakpoint at function func . |
run | Start program. |
next | Go to next program line. Do not enter functions. |
step | Go to next program line. Enter functions. |
list | Show the surrounding source code of the currently processed line. |
print expr |
Print the value of the expression expr . |
display expr |
Display the value of the expression expr every time the program stops. |
watch expr |
Stop when value of the expression expr changes. |
continue | Continue execution until a breakpoint or a watchpoint appears. |
backtrace | Print a list of functions that are currently active. |
quit | Exit GDB |
Example¶
We debug the following program called bug.c which crashes on execution.
#include <stdio.h>
int global = 0;
void begin() {
global = 1;
}
void loop() {
int v[2];
int i, k;
for(i = 0; i < 8; i++) {
k = i/2*2; /* should have been k = i/(2*2); */
v[k] = i;
}
}
void end() {
global = 2;
}
int main() {
begin();
loop();
end();
return 0;
}
Sample GDB session¶
$ gcc -Wall -O0 -g bug.c -o bug
$ gdb ./bug
GNU gdb (GDB) Red Hat Enterprise Linux 8.2-11.el8
[...]
Reading symbols from /pfs/data2/home/xx/xxx/xxxx/bug...done.
(gdb) break main
Breakpoint 1 at 0x4005b2: file bug.c, line 26.
(gdb) run
Starting program: /pfs/data2/home/xx/xxx/xxxx/bug
Breakpoint 1, main () at bug.c:26
26 begin();
(gdb) next
27 loop();
(gdb) next
Program received signal SIGSEGV, Segmentation fault.
0x0000000000000005 in ?? ()
(gdb) # now we know that the bug is in loop(). start again.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /pfs/data2/home/xx/xxx/xxxx/bug
Breakpoint 1, main () at bug.c:26
26 begin();
(gdb) next
27 loop();
(gdb) step
loop () at bug.c:13
13 for(i = 0; i < 8; i++)
(gdb) next
15 k = i/2*2;
(gdb) next
16 v[k] = i;
(gdb) # maybe k gets too big?
(gdb) watch (k >= 2)
Hardware watchpoint 2: (k >= 2)
(gdb) continue
Continuing.
Hardware watchpoint 2: (k >= 2)
Old value = 0
New value = 1
loop () at bug.c:16
16 v[k] = i;
(gdb) # k is too big
(gdb) print k
$1 = 2
(gdb) print i
$2 = 2
(gdb) quit
Core dumps¶
When the program crashes, a log file (called core dump) can be created which contains the state of the program when it crashed. This is turned off by default because these core dumps can get quite large. If you want to turn it on you have to change your ulimits, for example:
$ ulimit -c unlimited
Every time your program crashes a new file called core.xxx (where xxx is a number) will be created in the directory from which you started the executable. You can call gdb to examine your core dump using the following command (assuming your program is called ex):
$ gdb ./ex core.xxx
Now you can print a backtrace to check in which function the error happened and what values the parameters had. Additionally you can examine the values of your variables to reproduce the error.
Multithreaded debugging¶
GDB can also be useful for multithreaded applications for example when OpenMP was used. By going through each thread separately you can better see what is really going on and you can check the computation step by step. The following commands are useful for multithreaded debugging:
Command | Description |
---|---|
info threads | Shows the status of all existing threads. |
thread num |
Switches to the thread with the number num |
Example¶
We debug the following program called thread_bug.c which crashes on execution.
#include <stdio.h>
#include <pthread.h>
pthread_t thread;
void* thread3 (void* d)
{
int w[2];
int c, l;
for(c = 0; c < 8; c++) {
l = c/2*2; /* should have been l = c/(2*2); */
w[l] = c;
}
return NULL;
}
void* thread2 (void* d)
{
int v[2];
int i, k;
for(i = 0; i < 8; i++) {
sleep(4);
k = i/(2*2); /* should have been k = i/(2*2); */
v[k] = i;
}
return NULL;
}
int main (){
pthread_create (&thread, NULL, thread2, NULL);
pthread_create (&thread, NULL, thread3, NULL);
//Thread 1
int count1 = 0;
while(count1 < 4000) {
printf("Thread 1: %d\n", count1++);
}
pthread_join(thread, NULL);
return 0;
}
Sample GDB thread session¶
$ gcc -g thread_bug.c -o thread_bug -lpthread
$ gdb ./thread_bug
[...]
Reading symbols from /pfs/data2/home/xx/xxx/xxxx/thread_bug...done.
(gdb) break thread3
Breakpoint 1 at 0x40060c: file thread_bug.c, line 11.
(gdb) break thread2
Breakpoint 2 at 0x400650: file thread_bug.c, line 24.
(gdb) break main
Breakpoint 3 at 0x40069e: file thread_bug.c, line 35.
(gdb) run
Starting program: /tank/home/doros/.t/thread_bug
[Thread debugging using libthread_db enabled]
Breakpoint 3, main () at thread_bug.c:35
35 pthread_create (&thread, NULL, thread2, NULL);
Missing separate debuginfos, use: debuginfo-install glibc-2.12-1.132.el6.x86_64
(gdb) info threads
* 1 Thread 0x7ffff7fe5700 (LWP 28260) main () at thread_bug.c:35
(gdb) next
[New Thread 0x7ffff7fe3700 (LWP 28303)]
36 pthread_create (&thread, NULL, thread3, NULL);
(gdb) info threads
2 Thread 0x7ffff7fe3700 (LWP 28303) thread2 (d=0x0) at thread_bug.c:24
* 1 Thread 0x7ffff7fe5700 (LWP 28260) main () at thread_bug.c:36
(gdb) next
[Switching to Thread 0x7ffff7fe3700 (LWP 28303)]
Breakpoint 2, thread2 (d=0x0) at thread_bug.c:24
24 for(i = 0; i < 8; i++) {
(gdb) next
25 sleep(4);
(gdb) next
[New Thread 0x7ffff77e2700 (LWP 28344)]
[Switching to Thread 0x7ffff77e2700 (LWP 28344)]
Breakpoint 1, thread3 (d=0x0) at thread_bug.c:11
11 for(c = 0; c < 8; c++) {
(gdb) info threads
* 3 Thread 0x7ffff77e2700 (LWP 28344) thread3 (d=0x0) at thread_bug.c:11
2 Thread 0x7ffff7fe3700 (LWP 28303) 0x000000362f8accdd in nanosleep () from /lib64/libc.so.6
1 Thread 0x7ffff7fe5700 (LWP 28260) 0x000000362f8725db in _IO_new_file_overflow () from /lib64/libc.so.6
(gdb) thread 2
[Switching to thread 2 (Thread 0x7ffff7fe3700 (LWP 28303))]#0 0x000000362f8accdd in nanosleep () from /lib64/libc.so.6
(gdb) next
Single stepping until exit from function nanosleep,
which has no line number information.
[Switching to Thread 0x7ffff77e2700 (LWP 28344)]
Breakpoint 1, thread3 (d=0x0) at thread_bug.c:11
11 for(c = 0; c < 8; c++) {
(gdb) thread 2
[Switching to thread 2 (Thread 0x7ffff7fe3700 (LWP 28303))]#0 0x000000362f8acce9 in nanosleep () from /lib64/libc.so.6
(gdb) next
Single stepping until exit from function nanosleep,
which has no line number information.
0x000000362f8acb50 in sleep () from /lib64/libc.so.6
(gdb) info threads
3 Thread 0x7ffff77e2700 (LWP 28344) thread3 (d=0x0) at thread_bug.c:11
* 2 Thread 0x7ffff7fe3700 (LWP 28303) 0x000000362f8acb50 in sleep () from /lib64/libc.so.6
1 Thread 0x7ffff7fe5700 (LWP 28260) 0x000000362f8476f0 in vfprintf () from /lib64/libc.so.6
(gdb) thread 3
[Switching to thread 3 (Thread 0x7ffff77e2700 (LWP 28344))]#0 thread3 (d=0x0) at thread_bug.c:11
11 for(c = 0; c < 8; c++) {
(gdb) next
12 l = c/2*2; /* should have been l = c/(2*2); */
(gdb) watch (k >= 2)
No symbol "k" in current context.
(gdb) watch (l >= 2)
Hardware watchpoint 4: (l >= 2)
(gdb) continue
Continuing.
Thread 1: 0
Thread 1: 1
Thread 1: 2
Thread 1: 3
Thread 1: 4
[...]
Hardware watchpoint 4: (l >= 2)
Old value = 0
New value = 1
thread3 (d=0x0) at thread_bug.c:13
13 w[l] = c;
(gdb) print l
$1 = 2
(gdb) print c
$2 = 2
(gdb) quit
Disassembling¶
Command | Description |
---|---|
info functions | Shows names and data types of all defined functions. |
info line "function" | Map source lines to memory adresses (and back) |
disassemble function |
Disassembles "function" (or a function fragment). |
Sample GDB disassembling session¶
$ gcc -Wall -O0 -g bug.c -o bug
$ gdb ./bug
[...]
(gdb) info functions
All defined functions:
File bug.c:
void begin();
void end();
void loop();
int main();
Non-debugging symbols:
0x0000000000400370 _init
0x00000000004003a0 __libc_start_main@plt
0x00000000004003b0 __gmon_start__@plt
0x00000000004003c0 _start
0x00000000004003f0 deregister_tm_clones
0x0000000000400430 register_tm_clones
0x0000000000400470 __do_global_dtors_aux
0x0000000000400490 frame_dummy
0x0000000000400540 __libc_csu_init
0x00000000004005b0 __libc_csu_fini
0x00000000004005b4 _fini
Sample GDB disassembling session¶
(gdb) disassemble main
Dump of assembler code for function main:
0x000000000040050f <+0>: push %rbp
0x0000000000400510 <+1>: mov %rsp,%rbp
0x0000000000400513 <+4>: mov $0x0,%eax
0x0000000000400518 <+9>: callq 0x4004b6 <begin>
0x000000000040051d <+14>: mov $0x0,%eax
0x0000000000400522 <+19>: callq 0x4004c7 <loop>
0x0000000000400527 <+24>: mov $0x0,%eax
0x000000000040052c <+29>: callq 0x4004fe <end>
0x0000000000400531 <+34>: mov $0x0,%eax
0x0000000000400536 <+39>: pop %rbp
0x0000000000400537 <+40>: retq
End of assembler dump.
Sample GDB disassembling session¶
(gdb) disassemble /m main
Dump of assembler code for function main:
23 int main() {
0x000000000040050f <+0>: push %rbp
0x0000000000400510 <+1>: mov %rsp,%rbp
24 begin();
0x0000000000400513 <+4>: mov $0x0,%eax
0x0000000000400518 <+9>: callq 0x4004b6 <begin>
25 loop();
0x000000000040051d <+14>: mov $0x0,%eax
0x0000000000400522 <+19>: callq 0x4004c7 <loop>
26 end();
0x0000000000400527 <+24>: mov $0x0,%eax
0x000000000040052c <+29>: callq 0x4004fe <end>
27
28 return 0;
0x0000000000400531 <+34>: mov $0x0,%eax
29 }
0x0000000000400536 <+39>: pop %rbp
0x0000000000400537 <+40>: retq
End of assembler dump.
Sample GDB disassembling session¶
(gdb) disassemble /m loop
Dump of assembler code for function loop:
9 void loop() {
0x00000000004004c7 <+0>: push %rbp
0x00000000004004c8 <+1>: mov %rsp,%rbp
10 int v[2];
11 int i, k;
12
13 for(i = 0; i < 8; i++) {
0x00000000004004cb <+4>: movl $0x0,-0x4(%rbp)
0x00000000004004d2 <+11>: jmp 0x4004f5 <loop+46>
0x00000000004004f1 <+42>: addl $0x1,-0x4(%rbp)
0x00000000004004f5 <+46>: cmpl $0x7,-0x4(%rbp)
0x00000000004004f9 <+50>: jle 0x4004d4 <loop+13>
14 k = i/2*2; /* should have been k = i/(2*2); */
0x00000000004004d4 <+13>: mov -0x4(%rbp),%eax
0x00000000004004d7 <+16>: mov %eax,%edx
0x00000000004004d9 <+18>: shr $0x1f,%edx
0x00000000004004dc <+21>: add %edx,%eax
0x00000000004004de <+23>: sar %eax
0x00000000004004e0 <+25>: add %eax,%eax
0x00000000004004e2 <+27>: mov %eax,-0x8(%rbp)
15 v[k] = i;
0x00000000004004e5 <+30>: mov -0x8(%rbp),%eax
0x00000000004004e8 <+33>: cltq
0x00000000004004ea <+35>: mov -0x4(%rbp),%edx
0x00000000004004ed <+38>: mov %edx,-0x10(%rbp,%rax,4)
16 }
17 }
0x00000000004004fb <+52>: nop
0x00000000004004fc <+53>: pop %rbp
0x00000000004004fd <+54>: retq
End of assembler dump.
Sample objdump disassembling session¶
$ objdump -S -D bug
[...]
00000000004004c7 <loop>:
void loop() {
4004c7: 55 push %rbp
4004c8: 48 89 e5 mov %rsp,%rbp
int v[2];
int i, k;
for(i = 0; i < 8; i++) {
4004cb: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004d2: eb 21 jmp 4004f5 <loop+0x2e>
k = i/2*2; /* should have been k = i/(2*2); */
4004d4: 8b 45 fc mov -0x4(%rbp),%eax
4004d7: 89 c2 mov %eax,%edx
4004d9: c1 ea 1f shr $0x1f,%edx
4004dc: 01 d0 add %edx,%eax
4004de: d1 f8 sar %eax
4004e0: 01 c0 add %eax,%eax
4004e2: 89 45 f8 mov %eax,-0x8(%rbp)
v[k] = i;
4004e5: 8b 45 f8 mov -0x8(%rbp),%eax
4004e8: 48 98 cltq
4004ea: 8b 55 fc mov -0x4(%rbp),%edx
4004ed: 89 54 85 f0 mov %edx,-0x10(%rbp,%rax,4)
void loop() {
int v[2];
int i, k;
for(i = 0; i < 8; i++) {
4004f1: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004f5: 83 7d fc 07 cmpl $0x7,-0x4(%rbp)
4004f9: 7e d9 jle 4004d4 <loop+0xd>
k = i/2*2; /* should have been k = i/(2*2); */
v[k] = i;
}
}
4004fb: 90 nop
4004fc: 5d pop %rbp
4004fd: c3 retq
[...]